
A Syntax-Guided Neural Model for Natural
Language Interfaces to Databases

Florin Brad1, Radu Iacob2, Ionel Hosu2, Stefan Ruseti2, and Traian Rebedea2

1Bitdefender Romania
fbrad@bitdefender.com

2University Politehnica of Bucharest
{radu.iacob, ionel.hosu, stefan.ruseti, traian.rebedea}@cs.pub.ro

Abstract—Recent advances in neural code generation have
incorporated syntax to improve the generation of the target code
based on the user’s request in natural language. We adapt the
model of [1] to the Natural Language Interface to Databases
(NLIDB) problem by taking into account the database schema.
We evaluate our model on the recently introduced WIKISQL and
SENLIDB datasets. Our results show that the syntax-guided model
outperforms a simple sequence-to-sequence (SEQ2SEQ) baseline
on WIKISQL, but has trouble with the SENLIDB dataset due to
its complexity.

I. INTRODUCTION

Endowing non-technical users with the ability to investigate
large amounts of data is a practical AI tool that could boost
domains such as business intelligence. Research into Natural
Language Interfaces to Databases (NLIDB) has had a long his-
tory and can be tracked to the beginning of AI as a discipline
[2]. Despite the long-standing research efforts, progress has
been slow and widespread commercial use hasn’t picked up.

The main issues plaguing the progress are due to language
ambiguity and portability [3]. Another issue with data-driven
approaches is that applying data-hungry models to the NLIDB
problem is difficult due to the lack of large parallel corpora
consisting of (text, SQL code) pairs. However, recent datasets
alleviate this problem [4], [5].

The standard neural approach for code generation is a
SEQ2SEQ architecture that maximizes the probability of the
target code conditioned on the textual input [6].

Recent solutions incorporate syntactic information about
the target code in order to improve the output. Instead of
generating the code directly, [1] and [7] rely on the target
language grammar to generate the underlying Abstract Syntax
Tree (AST).

We modify the syntax-guided model of [1] so that it
also handles schema information. The model outperforms a
SEQ2SEQ baseline on the WIKISQL corpus, but not on the
SENLIDB corpus. We show that this is due to the complexity
of the latter dataset.

II. RELATED WORK

The NLIDB problem can be seen as an instance of semantic
parsing, which is concerned with mapping a natural language
utterance to a formal meaning representation. Semantic parsing
has been traditionally deployed in question-answering systems,

where the target is a logical form, but it has also been applied
to code generation, where the output is a source code in a
formal language such as PYTHON or SQL.

Neural approaches dominate the recent solutions in semantic
parsing, mainly through the use of variants to the SEQ2SEQ
architecture [8], [9]. This approach alleviates the need for
building intermediate representations of meaning at the ex-
pense of requiring large parallel corpora of (annotation, logical
form) pairs.

More advanced solutions [10] apply pointing mechanisms
[11] to copy named entities from the textual description.
Reinforcement learning is leveraged in [4] through a policy-
based learning algorithm coupled with a pointing mechanism.
They obtain diverse alternations to the where clause of an SQL
query, while outperforming a strong neural machine translation
baseline.

Recent approaches incorporate syntactic information about
the target code in order to improve the output. Instead of
generating the code directly, [1] and [7] rely on the target
language grammar to generate the underlying Abstract Syntax
Tree (AST). This ensures that the output is grammatically
correct. Another approach in [12] is to decompose SQL
generation problem into sketch generation and slot filling.
An SQL sketch is obtained from the original SQL query by
replacing specific columns and tables with placeholders. They
show that decoding the SQL sketch first and then injecting it
into a separate decoder improves the generation of the target
SQL.

III. NEURAL MODEL

We follow the model in [1] and estimate the probability
P (yast|x, c), where yast is the underlying AST of the target
SQL code y, x is the user question and c is the query-specific
schema information. We factorize this as:

P (yast|x, c) =
∏
t

P (at|a<t, x, c),

where at are actions that construct the underlying AST of the
code snippet y.

An action at can represent either the application of a
production rule from the SQL grammar or the generation of

a token. A production rule consists of a left-hand side (non-
terminal node) and a right-hand side containing non-terminal
and/or terminal nodes. For instance, the production rule of a
simplified SELECT statement can look like this:

select→ column from where

where select, column, from and where are non-terminal nodes.
We show in Fig. 1(a) the AST for the SQL code select

salary from employees where age > 5. The sequence of
actions corresponding to the AST generation is [select →
column from where, column → ’salary’, ’salary’ →
from, from→ table, ..., constant→ ’5’].

The bolded nodes are terminals and correspond to string to-
kens. A token can be either generated from a fixed vocabulary
or copied from the input using a copy mechanism [13], [14].
The model essentially learns the sequence of actions resulting
from a depth-first traversal of the AST.

A. Input embedding

Let Xuser = [xu
1 , x

u
2 , ..., x

u
U] be the user question tokens,

Xcolumns = [xc
1, x

c
2, ..., x

c
C] be the column names, where

xc
j = [xc

j,1, x
c
j,2, ..., x

c
j,Tj

] is the sequence of tokens in the jth

column. (e.g. ”player no #” column results in the sequence
[”player”, ”no”, ”#”]). Let Lj be the number of characters in
the column name xc

j .
Column representation We embed the jth column by

concatenating the average word and character embeddings:

emb(xc
j) = [

1

Tj

Tj∑
k=1

Wword · xc
j,k;

1

Lj

Lj∑
i=1

Wchar · xc
j [i]]

,

where Wword and Wchar are pre-trained word and character
embedding matrices.

We embed the user question tokens using a different matrix
Wquestion.

B. Input representation

We encode the input differently for each dataset. For WIK-
ISQL, the schema information (column names of Wikipedia
tables) is specific to each example and so the input is X =
[Xuser;Xcolumn], where ; denotes the concatenation of the
two sequences.

On the other hand, the SENLIDB queries correspond to a
single database schema, so there is no need to encode the
same columns for each example. We let X = [Xuser] be the
input in this case.

To encode the input, we run a bidirectional LSTM network
on tokens from X.

C. Decoder

The decoder is a modified LSTM that accommodates several
inputs: context vector ct, embedding of current node, em-
bedding of current action at and previous hidden state st−1,
embedding of parent action and parent hidden state.

D. Apply rule

The probability of selecting rule r is computed as:

P (at = ApplyRule[r]|a<t, X) =

softmax(Wrule · st + brule) · onehot(r)

where st is the current decoder state.

E. Token generation

Token prediction can be rewritten by marginalizing over
the binary variable sel, which indicates whether token yt is
generated from the vocabulary or copied from the input:

P (at = GenToken[yt]|a<t, X) =

P (sel = vocab|a<t, X) · P (yt|vocab, a<t, X)+

P (sel = copy|a<t, X) · P (yt|copy, a<t, X)

The soft selection is modeled as:

P (sel|a<t, X) = softmax(Wsel · [ct; st] + bsel)

where ct is the context vector (encoder states weighted by the
attention scores).

Vocabulary prediction is computed as:

P (yt|vocab, a<t, X) =

softmax(Wvocab · (Wlin · [ct; st] + blin) + bvocab)

The copying probability is computed similarly to the at-
tention scores, by computing a soft- alignment between the
encoder hidden states and the current hidden state st.

F. Training

We maximize the log-likelihood of the correct sequence
of actions (apply rule or generate token) conditioned on the
input (user request and table columns), over the entire training
corpus D:

L(D) =
1

|D|

|D|∑
i=1

logP (y
(i)
ast|x(i), c(i))

G. Inference

At inference we use the decoding algorithm of [1] to
generate the surface form SQL from the underlying AST.
Briefly, the algorithm is a modified beam-search that takes into
account the type of the current node being expanded. If the
current node is non-terminal then only production rules will
be considered. Otherwise if the node is terminal, the network
will generate a token from the fixed vocabulary or copy an
input token. The algorithm terminates when all the ASTs in
the beam are completed.

IV. EXPERIMENTS

We test our approach on two existing datasets, WIKISQL
[4] and SENLIDB [5]. Our implementation and pretrained
models are available at https://github.com/johnthebrave/
code-generation.

select

column from where

table comp

column constant

greater_thanemployees

salary

age 5

select

column from where

table comp

column constant

greater_than<table>

<col>

<col> <const>

(a) (b)

Fig. 1: (a) The AST for the SQL code Select salary from posts where age > 5. The blue rectangles correspond to non-terminal
nodes, while the red ellipses correspond to terminal nodes. (b) The AST sketch corresponding to the previous SQL code. The
values in the terminal nodes are replaced with placeholders. We can deterministically obtain a list-based logical form sketch
from the AST sketch: select <col> from <table> where <col> > <const>

A. Datasets

The WIKISQL dataset features (question, SQL query) pairs
over tables extracted from Wikipedia. The queries are fairly
simple SELECT statements, with one or more WHERE clauses.
Each WHERE clause follows a fixed pattern: column condition
constant, where condition is one of the operators: =, < or
>. Moreover, each query is associated with a specific table,
which is known beforehand. Therefore, the main difficulty lies
in generating the appropriate columns and constants in the
WHERE clause as well as the aggregation operator for the
SELECT clause, if one is necessary.

The SENLIDB corpus contains (question, SQL query) pairs
crawled from the website https://stackexchange.com. The
queries are more difficult than in the WIKISQL corpus, featur-
ing SQL clauses such as JOIN operations or nested SELECT
statements. In Table I we list statistics for both datasets.
The SENLIDB grammar has substantially more production
rules (1154) than the WIKISQL grammar (55). The average
number of actions is also larger (161.0 vs 59.6), with a larger
spread around the mean (standard deviation 98.0 vs 13.3).
On the other hand, the average input length on SENLIDB
is smaller than WIKISQL (7.88 vs 11.7). Thus, the larger
grammar size, longer sequences of target actions and shorter
input descriptions of the SENLIDB corpus increase the burden
on the decoder and make the generation process more difficult.

To process both datasets we used the same comprehensive
grammar, designed for the T-SQL dialect. However, if we take
into account the specific syntactical limitations imposed on the
WikiSQL queries, then the number of production rules and
implicitly the size of the ASTs may be significantly reduced.

STATISTIC
WIKISQL

TRAIN
SENLIDB

TRAIN

avg actions length 59.6 161.0
std actions length 13.3 98.0
avg AST size (#nodes) 51.78 135
std AST size 11.14 81
number of production rules 55 1154
avg input tokens 11.7 7.88

TABLE I: Statistics of the WIKISQL and SENLIDB datasets

B. Preprocessing

The SENLIDB queries have aliases, which are temporary
names given to tables or columns. We identify such aliases,
determine their type and index and replace them with a
placeholder. For instance, the query SELECT id as user link
FROM posts p becomes SELECT id as alias col 1 FROM posts
alias table 1. The placeholders are then added to the target
vocabulary.

C. Evaluation

We measure the logical form accuracy of the SQL queries
on the WIKISQL and SENLIDB test sets. To obtain the SQL
query, we pick the most probable AST using beam-search, and
then deterministically convert the AST to the corresponding
SQL.

We also report the sketch accuracy. We distinguish between
two types of sketches: logical form sketch (list-based) and
AST sketch (tree-based).
Logical form (LF) sketch Consider the following query:
SELECT student gpa FROM students WHERE student age >

20. The corresponding LF sketch is: SELECT <column>
FROM <table> WHERE <column> > <constant>. The LF
sketch can be obtained in two ways: train a SEQ2SEQ network
on (description, sketch) pairs directly and obtain the sketch
[15] or train a SEQ2SEQ network on (description, code) and
extract the sketch from the decoded code (as performed in the
ONESTAGE model of [12]).
AST sketch There are also two ways to obtain an AST sketch.
The first one is to remove the terminal nodes (nodes that hold
table names, columns, string constants, etc.) from the original
AST. Thus, the resulted simplified tree only captures the syn-
tactic aspects of the query. We then compute the AST sketch
accuracy by transforming the AST sketch into a sequence
of actions and checking whether it’s the same sequence that
makes the ground truth AST sketch. This allows us to compare
whether two queries have the same underlying structure, albeit
with differently instantiated values. The second way to obtain
an AST sketch is to directly generate it. Fig. 1(b) shows
the AST sketch corresponding to the AST in Fig. 1(a). The
values in the terminal nodes were replaced with appropriate
placeholders: column names with <col>, table names with
<table>, numeric and string constants with <const> etc.
Thus, the size of the target vocabulary is significantly reduced,
making it easier for the decoder to generate the AST sketch
than the full AST. The AST sketch can be deterministically
converted to an LF sketch, which is easier to compare to the
ground truth LF sketch. For instance, the AST sketch in Fig
1(b) results in the LF sketch select <col> from <table> where
<col> > <const>.

V. RESULTS

We report the logical form accuracy on both datasets in
Table II. We compare the syntax-guided model to a neural
machine translation (NMT) baseline reported by [15], a dual
encoder sketch-based approach by [15] and to the coarse-to-
fine (C2F) approach by [12].

On WIKISQL, our model increases the accuracy over the
NMT baseline by 6.69% and is comparable to the sketch-based
approach in [15]. This suggests that the benefits of simultane-
ously generating a syntax-and semantics-aware representation
of code (AST) are similar to separating the syntactical (sketch
generation) and semantic aspects (slot filling) of the generation
process.

The current state-of-the-art approach in [12] significantly
outperforms the syntax-guided method on the WIKISQL
dataset. To achieve this result they introduce several model
improvements (table-aware input encoder, fine meaning de-
coder).

However, since their solution is tailored to exploit the very
specific nature of the SQL queries from WIKISQL, it cannot
be applied on the much more complex SENLIDB corpus. For
example, they formulate the sketch generation process as a
classification problem. Therefore, they use a softmax classifier
to choose from one of the 35 possible sketches of the WHERE
clause, identified in the training set. For the SELECT clause,
they use another softmax classifier to choose the aggregation

METHOD
WIKISQL

TEST
SENLIDB

TEST

NMT [15] 32.07 2.44
DUAL ENCODER [15] 38.99 3.97
C2F [12] 71.7 -
Syntax-guided model 38.76 0.38

TABLE II: Accuracy of the generated SQL statements using
the ground truth SQL as reference

METHOD
WIKISQL

TEST
SENLIDB

TEST

NMT [15] 82.38 5.12
C2F [12] 95.9 -
Syntax-guided AST sketch - 1.69

Syntax-guided AST (–terminals) 86.74 1.03

TABLE III: Accuracy of the generated SQL sketches; the first
three rows show LF sketch accuracies, while the fourth row
shows an AST sketch accuracy, which is measured by looking
at the action sequences instead of the SQL tokens

operator and the associated column. This approach is unfeasi-
ble for queries where a more flexible grammar is required, as
the number of possible sketches grows exponentially with the
number of production rules.

On SENLIDB, the syntax-guided model surprisingly fares
worse than the NMT baseline. We suspect that the possible
improvements brought by the syntactic guidance may be
cancelled by semantic errors (i.e., incorrect tables or column
names). We look at sketch accuracies in Table III to gain a
better understanding of the model limitations.
Sketch accuracy The NMT baseline reported by [15] obtains
82.38% sketch accuracy on WIKISQL and only 5.12% on
SENLIDB, which shows that it’s more difficult to get the
structure right for queries in the latter dataset.

On WIKISQL, the syntax-guided model obtains an AST
sketch accuracy of 86.74%, higher than the 82.38% LF accu-
racy of the NMT baseline. This suggests that the NMT-based
sketch generation step in [15] and [12] can be replaced by a
syntax-guided approach in order to generate better sketches,
which could also boost the query refinement step.

On SENLIDB, the accuracy of the AST sketches obtained
from the full ASTs is very low (1.03%). To our surprise,
the model trained to directly generate the AST sketch obtains
1.69% accuracy, which is also lower than the NMT baseline
accuracy. Even though this model has a greatly reduced vocab-
ulary output, it still cannot recover the underlying AST sketch,
which is an easier problem than generating the correct AST
(and corresponding SQL). We suspect that the larger grammar
output (1154 production rules) and the larger AST size (135
nodes on average) for the SENLIDB prove too difficult for the
decoder, which has to generalize to a much larger tree-output
space.

VI. CONCLUSIONS

In this paper, we adapted a syntax-guided neural model to
the NLIDB problem. The model takes into account schema
information for the WIKISQL dataset, by encoding the column
names together with the input description. Results on WIK-
ISQL show that the syntax-guided model performs similarly to
the sketch-based approach in [15]. As an interesting extension,
we will investigate a merge between the two strands of work,
by consecutively generating the AST sketch and then instanti-
ating the terminal nodes. Additionally, we consider embedding
type information, to help guide the inference process. That
is, we would like to avoid a scenario where an operator or a
function would be applied on a set of incompatible arguments.

The results on SENLIDB show that the syntax-guided model
doesn’t outperform the NMT baseline, due to the increased
complexity of the dataset grammar relative to the dataset size.
As future work here, unsupervised pre-training on a large
amount of ASTs before conditioning on the user’s description
could boost performance of the SQL generation.

ACKNOWLEDGMENTS

This work has been funded by the Text2NeuralQL research
project (PN-III-P2-2.1-PTE-2016-0109).

REFERENCES

[1] P. Yin and G. Neubig, “A Syntactic Neural Model for General-Purpose
Code Generation,” 2017. [Online]. Available: http://arxiv.org/abs/1704.
01696

[2] I. Androutsopoulos, R. Graeme, and P. Thanisch, “Natural language
interfaces to databases,” Proceedings of the twenty-second annual
computer personnel research conference on Computer personnel
research conference - CPR ’86, no. 709, pp. 12–26, 1986. [Online].
Available: http://dl.acm.org/citation.cfm?id=317210.317219

[3] R. Pazos, A. Rodolfo, B. González, J. Juan, A. L., A. Marco, F. Martı́nez,
A. José, H. Fraire, and J. Héctor, “Natural language interfaces to
databases: An analysis of the state of the art,” Studies in Computational
Intelligence, vol. 451, pp. 463–480, 2013.

[4] V. Zhong, P. Alto, C. Xiong, P. Alto, R. Socher, and P. Alto, “Seq2SQL:
Generating Structured Queries from Natural Language using Reinforce-
ment Learning,” 2017.

[5] F. Brad, R. C. A. Iacob, I. Hosu, and T. Rebedea, “Dataset for a neural
natural language interface for databases (NNLIDB),” in Proceedings
of the Eighth International Joint Conference on Natural Language
Processing, IJCNLP 2017, Taipei, Taiwan, November 27 - December 1,
2017 - Volume 1: Long Papers, 2017, pp. 906–914. [Online]. Available:
https://aclanthology.info/papers/I17-1091/i17-1091

[6] L. Mou, R. Men, G. Li, L. Zhang, and Z. Jin, “On End-to-End Program
Generation from User Intention by Deep Neural Networks,” Arxiv, no.
March 2016, 2015. [Online]. Available: http://arxiv.org/abs/1510.07211

[7] M. Rabinovich, M. Stern, and D. Klein, “Abstract Syntax Networks
for Code Generation and Semantic Parsing,” 2017. [Online]. Available:
http://arxiv.org/abs/1704.07535

[8] R. Jia and P. Liang, “Data Recombination for Neural Semantic Parsing,”
pp. 12–22, 2016.

[9] L. Dong and M. Lapata, “Language to Logical Form with Neural
Attention,” 2016. [Online]. Available: http://arxiv.org/abs/1601.01280

[10] W. Ling, E. Grefenstette, K. Moritz Hermann, T. Kocisky, A. Senior,
F. Wang, and P. Blunsom, “Latent Predictor Networks for Code Gener-
ation,” Acl, pp. 1–13, 2016.

[11] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks,” pp. 1–9,
2015. [Online]. Available: http://arxiv.org/abs/1506.03134

[12] L. Dong and M. Lapata, “Coarse-to-Fine Decoding for Neural Semantic
Parsing,” 05 2018. [Online]. Available: https://arxiv.org/abs/1805.04793

[13] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing
the Unknown Words,” Acl 2016, pp. 140–149, 2016. [Online].
Available: http://arxiv.org/abs/1603.08148

[14] J. Gu, Z. Lu, H. Li, and V. O. K. Li, “Incorporating Copying
Mechanism in Sequence-to-Sequence Learning,” Acl, p. 11, 2016.
[Online]. Available: http://arxiv.org/abs/1603.06393

[15] I. Hosu, R. C. A. Iacob, F. Brad, and T. Rebedea, “Natural language
interface for databases using a dual-encoder model.”

APPENDIX

