Learning to Maximize Return
in a Stag Hunt Collaborative Scenario
through Deep Reinforcement Learning

Andrei Nica*, Tudor Berariu*T, Florin GogianuT, and Adina Magda Florea*

*Faculty of Automatic Control and Computers
University Politehnica of Bucharest

Email: {andreic.nica, tudor.berariu} @ gmail.com
adina.florea@cs.pub.ro

TBitdefender
Email: {fgogianu, tberariu} @bitdefender.com

Abstract—In this paper we present a deep reinforcement
learning approach for learning to play a time extended social
dilemma game in a simulated environment. Agents face differ-
ent types of adversaries with different levels of commitment to a
collaborative strategy. Our method builds on recent advances
in policy gradient training using deep neural networks. We
investigate multiple stochastic gradient algorithms such as
Reinforce or Actor Critic with auxiliary tasks for faster
convergence.

Keywords-deep reinforcement learning; social dilemmas; pol-
icy gradient

I. INTRODUCTION

Last years’ research yielded continuous progress in deep
reinforcement learning algorithms for agents placed in sim-
ulated scenarios. A plethora of novel model-free algorithms
explored the advantages of using deep neural networks for
predicting state, or action values, and for approximating poli-
cies for continuous control in various visual environments
(e.g. Atari [10], Vizdoom [6], or Minecraft [14], or board
games (Go). Few recent studies focused on reinforcement
learning in multi-agent setups where several learning entities
must cooperate in competing, or collaborative games. The
problem of non-stationarity, one of the core challenges in
reinforcement learning, is aggravated by the continuously
changing behaviors of the other actors.

The return scheme of a multi-agent reward-based scenario
is sometimes best described from a game theory perspective.
A payoff matrix summarizes the gains for all players as
a function of their chosen strategies. There is a large
corpus of research in Artificial Intelligence on how agents
can maximize their expected return through learning from
iterated interactions. All those results focused on learning in
stateless setups following various payoff schemes (e.g. pris-
oner’s dilemma). Also, theoretical properties such as Nash
equilibrium or Pareto optimality are assessed for learned
strategies. A more difficult problem is identifying such a
situation in a more complex scenario (e.g. during a chess

game or a collaborative prey hunting) where the reward is
a consequence of a (possibly large) sequence of decisions
based on partial raw observations of the environment. This
paper presents a deep reinforcement learning approach to
such a scenario, where agents are situated in a cooperative
episodic game based on stag hunt. Players have no persistent
memory from one episode to the next.

The stag hunt (also known as trust dilemma) is a game
where each agent needs to choose between social collabora-
tion for a higher reward, and a lower-risk but less rewarding
individual solution. The original formulation refers to a
group of hunters where each either goes with the group in
a stag chase or gets a hare on its own. Of course, a hare is
worth less than a stag.

There’s a fundamental change between stateless one-shot
games and episodic ones, even if the underlaying payoff ma-
trix is identical, and direct communication between players
is not allowed. If there is no initial irrevocable commitment
to a strategy agents can observe the state of actions and
choose to change their minds during the game. In such
scenarios understanding the intentions of the other players
before committing to a strategy is crucial in achieving high
return policies. The game we tackle in this paper exemplifies
this by placing together two agents in a toxic environment.
They have to choose between cooperating in a swine hunt,
and leaving the game for a smaller reward.

One of the goals of our research was to see if agents un-
derstand the underlaying macro scheme (which is an instance
of the stag hunt game) through deep reinforcement learning
techniques and not by being explicitly taught to choose
between two strategies. Abstracting a high description of
the interactions with the environment would be beneficial in
many ways. For example, good performance in this game
might offer a valuable prior experience before learning a
second similar task (transfer learning). Knowing how to deal
with a trust dilemma in general requires an agent facing a
new situation just to learn how to interpret perception, and



how to affect that specific environment reducing the burden
on the learning process.

The approach taken in our work is based on on-line policy
gradient methods, more precisely variations of REINFORCE
and Actor-Critic algorithms with auxiliary tasks. All predic-
tors are deep convolutional networks followed by recurrent
layers trained using gradient-based updates per episode.

Policy Gradient methods are known to suffer from high
variance, stability being achieved through combining asyn-
chronous experiences of several players, or through off-
line learning from a memory. Both approaches tackle the
correlation between consecutive observations in a typical
reinforcement learning setup.

The scenario we tried to solve, called Malmo Platform
PigChase! is one of the scenarios in Malmo Platform a re-
inforcement learning environment built on top of Minecraft.
The higher complexity of this medium leads to a high re-
source, slow environment, which at first glance is incompati-
ble with training deep neural predictors that require millions
of samples before achieving high returns. For this reason
we implemented a simplified replica of the original setup
approximating the dynamics of the original setup which we
will call from now on the PigChase Replica environment. We
had two objectives in mind for this simplified environment:
to be many times faster than the original and to work in
batch mode.

We then trained policy gradient based agents in this fast
setup only to fine tune them at the end on the original one.
Our intuition was that once the agent understands the general
dynamics and the underlying trust dilemma, moving him on
a similar environment requires small adaptation.

In what follows, section II formally describes the rein-
forcement learning problem, III presents the environment,
and other section follow. We provide code? for all the models
discussed in this overview.

II. REINFORCEMENT LEARNING
A. Background and Notation

In a classic reinforcement learning setting an agent inter-
acts with an environment described by a Markov Decision
Process object (S, A, P,r). We consider a finite and discrete
state-action space within a finite, discounted, horizon. At
each time-step ¢ the agent observers the current state s € S
and takes the action ¢ € A by following the policy
m:8 x A — R, a mapping from the state-action space
to the probability of taking action a given the observation.
It then moves to the next state s;11 ~ P(-,st,a¢), the
probability of transitioning from one state to another given
action « and to receive reward r : SX A — [Ryin, Rymax]-

The general reinforcement problem is then finding a
policy 7 that maximizes the expected total discounted reward

Uhttps://www.microsoft.com/en-us/research/project/project-malmo/
Zhttps://github.com/village-people/flying-pig

R; = Zzozo ’yer_kH, where v € (0, 1) is the discount term
controlling the importance of future rewards.

We are now in a position to define several functions for
describing the utility of the states an agent visits and the
actions it takes. The value of a state-action pair (s,a) and
that of a state s when following a policy 7 is given by:

Q" (s,a) =E [Ry|s; = s,a; = a, 7] (D
V7(s) =E [Ri|st = s, 7]

2
= ]E(LNTI'(S) [Qﬂ—(s? CL)] ( )

A related function is the difference between the action-
value and the value function, which can be seen as a relative
measure of the importance of taking action a over the
expected performance of the policy from state s:

A™(s,a) = Q7 (s,a) — V7™ (s) 3)

There are two major model-free approaches to solving
and MDP and learning a policy: estimating state-action
values and policy learning. The first approach iteratively
optimizes a loss based on the temporal difference error,
Li(0;) = E [(r + ymaxQ((s',a’;0;) — Q(s,a;6;)% and
has been shown to achieve state of the art results in general
game playing in discrete domains [10], [12], [15], [17]. From
the () values optimized as such we can then derive a policy
using an exploration technique such as epsilon-greedy.

In this setting we are however interested in stochastic
methods, directly optimizing the policy we are trying to
find. Specifically, we are parameterizing the policy 7 and
optimizing the parameters 6 in the direction of the episodic
return R; using gradient ascent. The gradient of the perfor-
mance function in REINFORCE [18], the first in this family
of methods, is then:

VoJo =E; oVologn(s,a)R: 4)

The method above suffers from the high variance of the
Rt estimator and can be improved by subtracting a baseline
from it, obtaining a gradient VyE; , log w(s, a)R; — b(s).

Notice the quantity R; —b(s) can be seen as the advantage
function A™(s,a) defined in equation 3 and this gives rise
to a family of actor-critic methods in which the actor
takes actions according to the policy 7 and is optimized
in the direction of the gradient of the advantage function
provided by the critic, while the critic is updated with
the temporal difference learning error as in the state-action
methods described above.

B. Related Work

Our work is concerned with finding an optimum policy
in environments that resemble iterated matrix games [1],
[11]. While reinforcement learning algorithms have been
used in iterated matrix games [3], [19], our setting is closer



to Sequential Social Dilemmas [7] that take into account
that real-world social dilemmas are temporally extended.
However we are not directly concerned with modeling the
payoff matrix of these games, but to learn an optimum policy
when playing with a cooperative agent or a defector. We
are rather interested in the sample efficiency of an agent
trained in a such scenario and the robustness of the policy
to environments with different cooperation - defection ratios.

For training our models on the PigChase Replica Environ-
ment we used methods based on the REINFORCE [18] algo-
rithm coupled with various variance reduction techniques as
described in [13]. For the transfer learning experiments with
fine-tuning on the PigChase Malmo Platform we employed
a distributed architecture inspired by [9] and [2].

While informed by the multi-agent literature, our setting
can be seen as having the other agent as part of the
environment; we do not train multiple agents as in a multi-
agent environment. However our agent is required to learn a
behaviour that is effective when playing with collaborative
or greedy agents.

III. P1G CHASE CHALLENGE

The target learning environment for the models presented
in this paper is Pig Chase, a collaborative two-agent game
published by Microsoft as part of a competition called
Malmo Collaborative AI Challenge®. This document builds
on our insights from the solution submitted to that contest.

Pig Chase is a Malmo Platform scenario where two
players act in a small environment along with a swine. The
game is a stag hunt example where the two agents have to
collaborate without direct communication in order to catch
the running pig. If the players succeed in cornering the swine
they both get a high reward (25). Both agents also have the
option of exiting the environment through one of the two
gates for a smaller reward (5). Since the pig can run away
and there’s also a negative reward (-1) for each time step
spent in an episode, the agents might have to abandon the
swine chase if they find it as being ineffective in terms of
expected return. Since each player can suddenly switch from
chasing the pig to leaving the environment at any step in
the episode, a trust issue arises. Therefore in committing
to a strategy agents need to take into account not just the
personal benefit brought by it, but also the risk of the other
agent abandoning the collaboration.

The game setup offered two state representations: an
image of the 3D environment from the player’s point of
view, and also an abstract top view representation of the
map as shown in Figure 1. The visual representation is more
challenging as offers a partial perception of the current state
of the world, while also needing more complicated feature
extraction. The abstract top-view simplifies the observation

3https://www.microsoft.com/en-us/research/academic-program/
collaborative-ai-challenge/

First Person View

Symbolic View

>0

Game stats
Episode: 1
Score: -6
Previous action: 2
Actions taken: 6
Actions remaining: 19

Figure 1. Showing the two possible state representations provided by the
Microsoft Malmo Platform PigChase environment. Left: actual 3D image
as provided by the Mamlo Platform. Right: symbolic view encoding the
agents’ positions and orientations and the swine’s position along with a
representation of the map.

space as it removes the uncertainty over unperceived parts
of the world, and it also drastically reduces the input space
dimensionality. In our work we chose to use the abstract
representation for two reasons. First, we were interested
in investigating the feasibility of learning to predict the
other agent’s intentions (i.e. the probability of it committing
to the collaborative strategy) as recent years showed that
DQN can already successfully learn to induce good policies
from raw visual perceptions. Second, we wanted the ability
to approximately reproduce the scenario in the PigChase
Replica environment and only concerning ourselves with the
abstract top-view we managed to replicate the approximate
dynamics of the original Malmo Platform PigChase scenario
but at a much higher frames per second rate. Specifically we
were able to generate batches of up to 1024 games long of
up to 25 steps every two seconds.

IV. APPROACH

Early experimentation involved training feed-forward
parametrized estimators with DQN [10], Double DQN [15]
in order to compensate for over-estimation effects early in
the training and policy-gradient based methods.

Following these early trials we decided that policy-
gradient based methods with recurrent units could provide
us with a good baseline to build upon. Our agent consisted
of a deep convolutional neural network trained to learn a
policy through stochastic gradient updates. We implemented
an online learning algorithm since we tackled the large
variance that is characteristic to direct policy learning by
using batches of episodic experiences.

We experimented with REINFORCE, a stochastic policy
gradient method [18], and also we ran experiments with a
an advantage-like baseline as described in [9]. Finally we
experimented with auxiliary reward heads.



A. Neural Network Model

The network we ran all our experiments with is a four
layer convolutional neural network for feature extraction
fed into two successive GRU layers. Next are two fully
connected layers and the final softmax, value, and auxiliary
reward heads.

The state representation we used during training was a
18x9x9 tensor, with three layers for sand, grass and lapis
blocks and five layers for each of the two agents and the
pig, encoding their position and orientation.

B. The REINFORCE algorithm

In our approach we tried several baselines for the REIN-
FORCE algorithm, but one in particular yielded outstanding
results. Since training was based on batches of experiences
from this short-horizon extremely toxic episodic environ-
ment, we considered that the current time step is a crucial
factor in deciding the risk for one strategy or the other
(assuming that agents are indeed learning to abstract such
a binary decision) therefore we computed a baseline from
all discounted returns observed in states from all episodes at
the same time step. This averaged return provided a different
baseline at each time step in the episode.

V% = Vylogr (Rt —E [Rﬁf)D (5)

In Formula 5 the expected return for time step t is
estimated from the current batch according to Formula 6

BS T;
E[RP] =33 (" ©)
i T=t
C. Auxiliary Tasks

While the recurrent policy gradient model was able to
learn a good policy with good sample-efficiency we tried to
provide our model with additional cost functions designed
to help learning relevant features for the present task as first
developed in [4], [8].

For the first auxiliary task we trained the agent on pre-
dicting the instantaneous reward at the next step in order for
our model to learn faster about states and situations leading
to high reward.

The second auxiliary task we trained with was next map
prediction. We first considered fully generating the next map,
complete with the future position of the Challenger Agent
and the Pig, hoping that this would help our agent determine
the unknown policy of the Challenger Agent based on its
moves. We first considered feeding the hidden states of
the recurrent layers into a deconvolution for generating the
next state of the map, however we observed a severe slow-
down during learning when training this way. Therefore we
set up to predict a random coordinate on the (18, 9, 9)
state representation we used for our agents. At the start
of each episode we picked a random coordinate to be

predicted at each time-step. We hypothesize this additional
cost function helps our agent to learn faster the dynamics
of the environment and the given policy of the Challenger
Agent during each episode.

D. Training

When running experiments designed to target the eval-
uation procedure of the Malmo Platform we employed a
two-stage training process as described below.

Pre-training on the PigChase Replica Environment.
As mentioned above we developed a secondary environment
that approximates the dynamics of the Malmo-Challenge
world in the top-down view. We used this environment to
generate large batches of 1024 variable length episodes,
doing an optimization step on each batch using RMSProp.
We used batch normalization between the convolutional
layers as we noticed it improves the sample-complexity of
our model and allows for higher learning rates. This initial
pre-training phase allowed us easy quick experimentation
with various models and, more importantly, a good prior
when training our model on the Malmo-Challenge.

Training on the Malmo-Challenge environment. We
used the full pre-trained model and a custom StateBuilder
to further train our agent on the Malmo-Challenge envi-
ronment. For this phase we started multiple environments
and employed a training scheme inspired by GA3C [2],
collecting prediction requests from all the workers and
doing batched prediction on a single model. A separate
training process is doing optimization steps on batches of
128 episodes. We noticed best results in this phase using
Adam optimisation with a smaller-learning rate.

V. RESULTS

In what follows insights from our comparative tests are
presented with this section ending with the results obtained
with our final model being evaluated on the original Malmo
Platform Pig Chase environment.

The model we selected for fine tuning and evaluation on
Malmo Pig Chase is the advantage REINFORCE training
method with return, next state depth, and instant reward
predictions trained as auxiliary tasks. The three auxiliary
losses are all mean squared errors. We refer to this model
as the standard one. In the following results whenever
a parameter, or another training aspect is not explicitly
mentioned one can assume it is as in our standard model.

If it is not otherwise specified the following plots are
for 1024 * 10* episodes. That means that for batches of
1024 episodes 10000 optimization steps were performed and
reported in the plots. For batches of 128 the Adam optimizer
took 80000 steps. Plot lines are synchronized based on
the number of episodes used in training. Each plot line
shows values obtained by averaging 50 % (1024 /batch_size)
consecutive observations in order to smooth the lines and
make them comparable between different batch sizes. All



Batch size

-5 | —— Batch size: 32
Batch size: 64
—— Batch size: 128
-10 Batch size: 256
Batch size: 512
-15 Batch size: 1024

Mean episodic return

0.0 0.2 0.4 0.6 0.8 1.0
Episodes used in training le7

Figure 2. The standard model trained on different batch sizes for the same
number of episodes. Values represent mean un-discounted episodic return
averaged from five identical runs with different seeds.

plot lines represent the mean of five identical experiments
with different seeds for the random number generators. The
adversary is an A* focused agent with probability p = .7,
the others being random players.

Our algorithms learn stochastic policies in an on-line
fashion, therefore no separate evaluation was performed. We
tried in a few cases to freeze training and to evaluate by
eliminating noise, and/or taking the action with the highest
probability instead of sampling from the policy, but we did
not observe a consistent benefit from this. We leave this for
further investigations.

A. Choosing the batch size

Since one of the pillars of our approach was the use of
the Pig Chase Replica environment as a fast pre-training
solution, we investigated first how training is affected by
the batch size. Small batches lead to high-variance due to
the bad approximation of the real cost function at each step,
but larger batches sometimes harm training as well [5].

Figure 2 shows that the optimizing the st andard model
with Adam leads to similar sample complexities for batches
between 32 and 1024. The largest batches proved to be
advantageous both in terms of training speed, and final
performance. Plot in Figure 2 and further investigation of the
results showed that batches of 1024 and 512 yield similar
models in terms of performance. We chose to continue our
experiments with batches of 1024 as they are the most
efficient in terms of time consumption due to efficient tensor
operations on modern GPUs.

In the following experiments (Figures 3 through 5) we
trained with batches of 1024 when explored various hy-
perparameters, but we doubled the observations with tests
on batches of 128 just to make sure there is no important

10

Lok : AR N Ay e T
c 5
=
o /
e 0
= -
2 Algorithm
% -5 | —— Batch size: 128. Method: Actor-Critic
G Batch size: 128. Method: Reinforce
g —— Batch size: 128. Method: reinforce_and_wv
-10 Batch size: 1024. Method: Actor-Critic
Batch size: 1024. Method: Reinforce
-15 Batch size: 1024. Method: reinforce_and_v
0.0 0.2 0.4 0.6 0.8 10
Episodes used in training le7
Figure 3. Comparing various policy learning methods for batches of size

1024 and 128.

difference when doing faster optimization steps on smaller
batches.

B. Policy Gradient methods

We first went for an on-line batch advantage actor-critic
approach but we had difficulties training the critic to provide
good state-values to bootstrap the training objective for
the actor. We then removed the critic and policy trained
faster through standard REINFORCE. Since the games had
a small horizon of maximum 25 steps, we considered a
different baseline as described in Equation 5. Keeping the
value prediction as a second loss but not for bootstrapping
in policy optimization, proved to be beneficial as plots in
Figure 3 shows.

It is worth mentioning that actor-critic methods reach
similar performance but with worse sample complexity than
the advantage reinforce update.

We kept the advantage-based reinforce learning with value
prediction as the reference model for the next experiments.

C. Auxiliary Tasks

As described in previous section, we investigated the
effect of adding auxiliary tasks to the optimized objective.
The auxiliary tasks help in finding better representations
faster in preliminary studies on small batches and for agents
trained directly on Malmo. Figure 4 infirms their use for
large batches. We made several attempts in weighting the
auxiliary losses, but for our model so far nothing brought
any improvement.

D. Exploration and avoiding pseudo-deterministic policies

In order to avoid pseudo-deterministic (almost one-hot
encoded) policies, and to ensure some level of exploration,
we first applied clamping on the policy values in interval
[.1,.9] before sampling during playing. We then investigated



10

Algorithm
—— Aux. tasks: none
Aux. tasks: both
0 —— Aux. tasks: Next state
Aux. tasks. Next reward

Mean episodic return
o

0.0 0.2 0.4 0.6 0.8 10
Episodes used in training le7

Figure 4. Learning averaged on five seeds with different combinations of
auxiliary tasks. No improvement for large batches

Condition
Type:AC Entropy:.no Clamp:no
Type:AC Entropy.no Clamp:yes
—— Type:AC Entropy:yes Clamp:no
o —— Type:AC Entropy:yes Clamp:yes
—— Type:STD Entropy:no Clamp:no
| —— Type:STD Entropy:no Clamp:yes
4 [ Type:STD Entropy-yes Clampno
Type:STD Entropy-yes Clamp:yes

Reward

0 2000 4000 6000 8000 10000
Episode

Figure 5. Learning averaged on five seeds with different combinations of
exploration: clamping and entropy regularization

if other methods such as adding an entropy regularization
term as in as in [9] for preventing the policy becoming
deterministic early in the training. Although this proved to be
beneficial for both Actor-Critic and our Reinforce algorithms
as shown in Figure 5, it did not beat the more practical
clamping method.

E. Using Batch Normalization on the last linear layer

In what follows we describe a practical problem en-
countered during training our agents. Using uni-dimensional
batch normalization before the last linear transformation in
our neural predictor proved to be extremely advantageous
for learning. However, when we fine-tuned or evaluated our
agents in single-instance mode on the original Malmo Pig
Chase environment, the performance was severely degraded.
There is a known problem in using neural models containing
batch normalization and trained on large batches of exam-
ples. These models usually have performance issues when
they are applied to single observations.

We investigated several approaches: (1) removing the last

Reward

5 Condition

—— Baich:1024 Batch_norm:no
—— Batch:1024 Batch_norm:yes
—— Batch:128 Batch_norm:no

——— Batch:128 Batch_norm:yes

0 10000 20000 30000 40000 50000 60000 70000 80000
Game batch

Figure 6. Learning averaged on five seeds with, and without batch
normalization on the last linear layer. STD refers to our standard model.

Condition
— SID

Reward

Episode

Figure 7. Fine tuning the last Batch Normalization layer with batches of
size 1.

batch normalization layer which resulted in a performance
loss and a larger training time needed to achieve the best
policy, (2) training a network with batch normalization
and then post-tune it on batches of one, and (3) training
a network with batch normalization, removing the batch
normalization layer and fine tuning it for a few epochs.
Results in Figure 6 show the difference in training with and
without the batch normalization layer.

The most time efficient method from the three above was
to train with batch normalization and then remove this layer
and fine tune the network for a short time taking advantage
again of large batches. The average evolution of this fine
tuning process can be visualized in Figure 7.

F. Evaluating agents against the two different types of
adversaries

We trained our agents on batches of adversaries sampled
at random based on a Bernoulli distribution in accordance
with the Microsoft Al Challenge rules. Specifically, the other
agent was an A* focused player with probability p = 0.7,
or a random player with probability 1 —p = 0.3. We trained
our agents on batches of 1024 episodes performing a policy
update after every batch.

We wanted to see if our trained agents learned some policy
situated in between optimal ones for playing with each



= = = I

-100
-125

-15.0

.22
1otV L p oot io- >_tocd
B P 1'.) 5\1 \) P
e Mo~ e et Typetie

e

Figure 8. Results against random players

E%%é%%%%%

50
25

00

“ p_foc s ™®

400
an? p_tocu® ‘(D P o B“P focus “ p_tocd B“P (D us
Type- pi:

528
B,Qp focus “ p jocu
ype e TPe 1ype’ T TyeeS ype

Figure 9. Results against A* (focused) players

type of adversaries, or if they really did learned to identify
the strategy of their adversaries and chose a near-optimal
sequence of decisions. Therefore we trained identical agents
with different distributions (p € {.0,.25,.5,.75,1.}) and
tested the agents with each type of player. We compared
the results between agents trained on p € {.25,.5,.75,}
with agents that had seen only one type of agent during
optimization.

As Figures 8 and 9 show, agents that faced both players
during training achieve near optimal scores. An expected
negative difference is expected since the agent needs to
spend some time steps figuring out who is he playing with.
An interesting aspect here is that models without batch
normalization on the last linear layer perform worse when
the distribution changes.

G. Evaluation on Malmo

The last thing in the pipeline was to make sure the
performance of our agent transfers from our Pig Chase
Replica environment to Malmo Pig Chase. For the compe-
tition we performed fine-tuning for six hours with several
players collecting experiences and collecting gradients in a
similar setup as in [9]. This process brought no significant
improvement in the average episodic return, but reduced
the variance of the scores stabilizing the policy in the new
environment.

H Method Overall vs A*  vs Random H
[ standard + fine tuning  9.527 13.43 0.42 |
Table T

MODELS EVALUATED ON MALMO PIG CHASE

We report in Table I scores from evaluation on Malmo
Pig Chase.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an empirical approach for solv-
ing a complex time-extended instance of a social dilemma
game. Our solution involved building a replica of the target
environment, learning agents on this environment, and then
fine tuning them in the original one. Even if there are
discrepancies between the two environments, resemblance in
the dynamics of the two are enough to transfer high-return
policies from the simpler one to the more complex one.

The main objectives for building a replica were: playing
simultaneously in a large batch of instances of this game, and
doing this very fast by taking advantage of modern GPUs’
computing capabilities in tensor algebra.

We tackled the problem with state-of-the-art actor-critic
with auxiliary tasks and entropy regularization, but in the end
a very careful trained REINFORCE with value prediction as
a supplementary cost (but not used in bootstrapping) proved
to be enough. Several practical tricks such as clamping the
policy, and the gradients significantly improved the training
stability and provided a boost in performance.

The success of REINFORCE algorithms depends on large
on the baseline used. Our baseline is the mean discounted
return for that particular time step in the game.

Although real reinforcement learning problems are usually
limited to a single game instance at a time, and playing
1024 trials at once is impossible (e.g. problems in robotics),
our method is equivalent to paying a series of games in
sequence. The only difference stems from our use of Batch
Normalization in the neural predictor, but there are solutions
such as building fake batches of inputs from the current
observations and some old ones (this comes with a cost as
prediction for these old observations is not needed, hence
computation time is wasted).

There are still further investigations to be done: seeing
if transfer learning is possible by evaluating our agents in a
new stag hunt problem with different environment dynamics,
and trying to train hierarchical models such as [16] in order
to abstract the decisions on the payoff matrix of expected
episodic returns from the sequence of micro-actions an agent
would take to accomplish them.

REFERENCES

[1] Robert M Axelrod. The evolution of cooperation: revised
edition. Basic books, 2006.



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason
Clemons, and Jan Kautz. Reinforcement learning through
asynchronous advantage actor-critic on a gpu. 2016.

Enrique Munoz de Cote, Alessandro Lazaric, and Marcello
Restelli. Learning to cooperate in multi-agent social dilem-
mas. In Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pages 783—

785. ACM, 2006.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-
necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

Guillaume Lample and Devendra Singh Chaplot. Playing fps
games with deep reinforcement learning. In AAAI pages
2140-2146, 2017.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz
Marecki, and Thore Graepel. Multi-agent reinforcement
learning in sequential social dilemmas. In Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent
Systems, pages 464-473. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2017.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,
Andy Ballard, Andrea Banino, Misha Denil, Ross Goroshin,
Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate
in complex environments. arXiv preprint arXiv:1611.03673,
2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy P Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. arXiv preprint arXiv:1602.01783,
2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, 2015.

Anatol Rapoport. Prisoners dilemma: recollections and ob-
servations. Game theory as a theory of conflict resolution.
Dordrecht: Reidel, pages 17-34, 1974.

Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver.  Prioritized experience replay.  arXiv preprint
arXiv:1511.05952, 2015.

Richard S. Sutton, David A. McAllester, Satinder P. Singh,
and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In NIPS, 1999.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J
Mankowitz, and Shie Mannor. A deep hierarchical approach
to lifelong learning in minecraft. In AAAI, pages 1553-1561,
2017.

[15]

[16]

[17]

(18]

[19]

Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double g-learning. arXiv preprint
arXiv:1509.06461, 2015.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul,
Nicolas Heess, Max Jaderberg, David Silver, and Koray
Kavukcuoglu. Feudal networks for hierarchical reinforcement
learning. arXiv preprint arXiv:1703.01161, 2017.

Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling
network architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581, 2015.

Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229-256, 1992.

Michael Wunder, Michael L Littman, and Monica Babes.
Classes of multiagent g-learning dynamics with epsilon-
greedy exploration. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 1167—
1174, 2010.



